
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 1

StellarisWare, Initialization and GPIO

Introduction

This chapter will introduce you to StellarisWare. The lab exercise uses StellarisWare API

functions to set up the clock, and to configure and write to the GPIO port.

Agenda

StellarisWare...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

3 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

Chapter Topics

StellarisWare, Initialization and GPIO ..3-1

Chapter Topics ...3-2

StellarisWare ...3-3

Clocking ...3-5

GPIO ..3-7

Lab 3: Initialization and GPIO ..3-9
Objective..3-9
Procedure ...3-10

 StellarisWare

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 3

StellarisWare

 Peripheral Driver Library

 Graphics Library

 USB Library

 Ethernet stacks

 In-System Programming

License-free and Royalty-free source code
for TI Cortex-M devices:

Features...

StellarisWare®

Peripheral Driver Library

 High-level API interface to complete peripheral set

 License & royalty free use for TI Cortex-M parts

 Available as object library and as source code

 Programmed in the on-chip ROM

StellarisWare Features

Graphics Library

 Graphics primitive and widgets

 153 fonts plus Asian and Cyrillic

 Graphics utility tools

USB Stacks and Examples

 USB Device and Embedded Host compliant

 Device, Host, OTG and Windows-side examples

 Free VID/PID sharing program

Ethernet

 lwip and uip stacks with 1588 PTP modifications

 Extensive examples

Extras

 SimpliciTI wireless protocol

 IQ math examples

 Bootloaders

 Windows side applications ISP...

StellarisWare

3 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

In System Programming Options

Stellaris Serial Flash Loader
 Small piece of code that allows programming of the flash without the need for a

debugger interface.

 All Stellaris MCUs ship with this pre-loaded in flash

 UART or SSI interface option

 The LM Flash Programmer interfaces with the serial flash loader

 See application note SPMA029

Stellaris Boot Loader

 Preloaded in ROM or can be programmed at the beginning of flash to act
as an application loader

 Can also be used as an update mechanism for an application running on a
Stellaris microcontroller.

 Interface via UART (default), I2C, SSI, Ethernet, USB (DFU H/D)

 Included in the Stellaris Peripheral Driver Library with full applications
examples

Fundamental Clocks...

 Clocking

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 5

Clocking

Fundamental Clock Sources

Precision Internal Oscillator (PIOSC)
 16 MHz ± 3%

Main Oscillator (MOSC) using…
 An external single-ended clock source
 An external crystal

Internal 30 kHz Oscillator
 30 kHz ± 50%
 Intended for use during Deep-Sleep power-saving modes

Hibernation Module Clock Source
 32,768Hz crystal
 Intended to provide the system with a real-time clock source

SysClk Sources...

System (CPU) Clock Sources

The CPU can be driven by any of the fundamental clocks …

 Internal 16 MHz

 Main

 Internal 30 kHz

 External Real-Time

- Plus -

 The internal PLL (400 MHz)

 The internal 16MHz oscillator divided by four (4MHz ± 3%)

Clock Source Drive PLL? Used as SysClk?

Internal 16MHz Yes Yes

Internal 16Mhz/4 No Yes

Main Oscillator Yes Yes

Internal 30 kHz No Yes

Hibernation Module No Yes

PLL - Yes

Clock Tree...

Clocking

3 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

Stellaris Clock Tree

driverLib API SysCtlClockSet() selects: SYSDIV divider setting

 OSC or PLL

 Main or Internal oscillator

 Crystal frequency GPIO...

 GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 7

GPIO

General Purpose IO

 Any GPIO can be an interrupt:
 Edge-triggered on rising, falling or both

 Level-sensitive on high or low values

 Can directly initiate an ADC sample sequence or µDMA transfer

 Toggle rate up to the CPU clock speed on the Advanced
High-Performance Bus. ½ CPU clock speed on the Standard.

 5V tolerant in input configuration

 Programmable Drive Strength (2, 4, 8mA or 8mA with slew rate
control)

 Programmable weak pull-up, pull-down, and open drain

 Pin state can be retained during Hibernation mode

Masking...

New Pin Mux GUI Tool: www.ti.com/StellarisPinMuxUtility

www.ti.com/StellarisPinMuxUtility

http://www.ti.com/StellarisPinMuxUtility

GPIO

3 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

0 0 1 0 0 1 1 0 0 0000…

GPIO Address Masking

The register we want to change is GPIO Port D (0x4005.8000)
Current contents of the register is:

0 0 0 1 1 1 0 1

Instead of writing to GPIO Port D directly, write to
0x4005.8098. Bits 9:2 (shown here) become a bit-mask

for the value you write.

0 0 1 1 1 0 1 1

1 1 1 0 1 0 1 1

Only the bits marked as “1” in the bit-mask are
changed.

GPIO Port D (0x4005.8000)

The value we will write is 0xEB:
Write Value (0xEB)

New value in GPIO Port D (note
that only the red bits were written)

Each GPIO port has a base address. You can write an 8-bit value directly to this base
address and all eight pins are modified. If you want to modify specific bits, you can use a
bit-mask to indicate which bits are to be modified. This is done in hardware by mapping
each GPIO port to 256 addresses. Bits 9:2 of the address bus are used as the bit mask.

GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_5|GPIO_PIN_2|GPIO_PIN_1, 0xEB);

Note: you specify base address, bit mask, and value to write.
The GIPOPinWrite() function determines the correct address for the mask.

Lab...

The masking technique used on ARM Cortex-M GPIO is similar to the “bit-banding” technique

used in memory. To aid in the efficiency of software, the GPIO ports allow for the modification

of individual bits in the GPIO Data (GPIODATA) register by using bits [9:2] of the address bus

as a mask. In this manner, software can modify individual GPIO pins in a single, atomic read-

modify-write (RMW) instruction without affecting the state of the other pins. This method is

more efficient than the conventional method of performing a RMW operation to set or clear an

individual GPIO pin. To implement this feature, the GPIODATA register covers 256 locations in

the memory map.

.

 Lab 3: Initialization and GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 9

Lab 3: Initialization and GPIO

Objective

In this lab we’ll learn how to initialize the clock system and the GPIO peripheral. We’ll then use

the GPIO output to blink an LED on the evaluation board.

Lab 3: Initialization and GPIO

 Configure the system clock

 Enable and configure GPIO

 Use a software delay to toggle an LED
on the evaluation board

Agenda ...

USB Emulation Connection

Lab 3: Initialization and GPIO

3 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

Procedure

Create Lab3 Project

1. Maximize Code Composer. On the CCS menu bar select File New CCS Project.

Make the selections shown below. Make sure to uncheck the “Use default location”

checkbox and select the correct path to the “ccs” folder you created. This step is

important to make your project portable and in order for the include paths to work

correctly. In the variant box, just type “120” to narrow the results in the right-hand box.

In the Project templates and examples window, select Empty Project (with main.c). Click

Finish.

When the wizard completes, close the Grace tab if it appears, then click the + or next

to Lab3 in the Project Explorer pane to expand the project. Note that Code Composer has

automatically added main.c file to your project. We placed startup_ccs.c in the

folder beforehand, so it was automatically added to the project. We also placed a file

called main.txt in the folder which contains the final code for the lab. If you run into

trouble, you can refer to this file.

 Lab 3: Initialization and GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 11

Header Files

2. Delete the current contents of main.c. Type (or cut/paste from the pdf file) the

following lines into main.c to include the header files needed to access the

StellarisWare APIs as well as a variable definition:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/sysctl.h"

#include "driverlib/gpio.h"

int PinData=2;

hw_memmap.h : Macros defining the memory map of the Stellaris device. This includes

defines such as peripheral base address locations such as GPIO_PORTF_BASE.

hw_types.h : Defines common types and macros such as tBoolean and HWREG(x).

sysctl.h : Defines and macros for System Control API of DriverLib. This includes

API functions such as SysCtlClockSet and SysCtlClockGet.

gpio.h : Defines and macros for GPIO API of DriverLib. This includes API functions

such as GPIOPinTypePWM and GPIOPinWrite.

int PinData=2; : Creates an integer variable called PinData and initializes it to 2.

This will be used to cycle through the three LEDs, lighting them one at a time.

You will see question marks to the left of the include lines in main.c displayed in Code

Composer. We have not yet defined the path to the include folders, so Code Composer

can’t find them. We’ll fix this later.

Main() Function

3. Next, we’ll drop in a template for our main function. Leave a line for spacing and add

this code after the previous declarations:

int main(void)

{

}

If you type this in, notice that the editor will add the closing brace when you add the

opening one. Why wasn’t this thought of sooner?

Lab 3: Initialization and GPIO

3 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

Clock Setup

4. Configure the system clock to run using a 16MHz crystal on the main oscillator, driving

the 400MHz PLL. The 400MHz PLL oscillates at only that frequency, but can be driven

by crystals or oscillators running between 5 and 25MHz. There is a default /2 divider in

the clock path and we are specifying another /5, which totals 10. That means the System

Clock will be 40MHz. Enter this single line of code inside main():

SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

The diagram below is an abbreviated drawing of the clock tree to emphasize the System

Clock path and choices.

The diagram below is an excerpt from the LaunchPad board schematic. Note that the

crystal attached to the main oscillator inputs is 16MHz, while the crystal attached to the

real-time clock (RTC) inputs is 32,768Hz.

 Lab 3: Initialization and GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 13

GPIO Configuration

5. Before calling any peripheral specific driverLib function, we must enable the clock

for that peripheral. If you fail to do this, it will result in a Fault ISR (address fault).This is

a common mistake for new Stellaris users. The second statement below configures the

three GPIO pins connected to the LEDs as outputs. The excerpt below of the LaunchPad

board schematic shows GPIO pins PF1, PF2 and PF3 are connected to the LEDs.

Leave a line for spacing, then enter these two lines of code inside main() after the line

in the previous step.

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

The base addresses of the GPIO ports listed in the User Guide are shown below. Note

that they are all within the memory map’s peripheral section shown in module 1. APB

refers to the Advanced Peripheral Bus, while AHB refers to the Advanced High-

Performance Bus. The AHB offers better back-to-back performance than the APB bus.

GPIO ports accessed through the AHB can toggle every clock cycle vs. once every two

cycles for ports on the APB. In power sensitive applications, the APB would be a better

choice than the AHB. In our labs, GPIO_PORTF_BASE is 0x40025000.

GPIO Port A (APB): 0x4000.4000

GPIO Port A (AHB): 0x4005.8000

GPIO Port B (APB): 0x4000.5000

GPIO Port B (AHB): 0x4005.9000

GPIO Port C (APB): 0x4000.6000

GPIO Port C (AHB): 0x4005.A000

GPIO Port D (APB): 0x4000.7000

GPIO Port D (AHB): 0x4005.B000

GPIO Port E (APB): 0x4002.4000

GPIO Port E (AHB): 0x4005.C000

GPIO Port F (APB): 0x4002.5000

GPIO Port F (AHB): 0x4005.D000

Lab 3: Initialization and GPIO

3 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

While() Loop

6. Finally, create a while (1) loop to send a “1” and “0” to the selected GPIO pin, with an

equal delay between the two.

SysCtlDelay() is a loop timer provided in StellarisWare. The count parameter is the

loop count, not the actual delay in clock cycles.

To write to the GPIO pin, use the GPIO API function call GPIOPinWrite. Make sure to

read and understand how the GPIOPinWrite function is used in the Datasheet. The third

data argument is not simply a 1 or 0, but represents the entire 8-bit data port. The second

argument is a bit-packed mask of the data being written.

In our example below, we are writing the value in the PinData variable to all three GPIO

pins that are connected to the LEDs. Only those three pins will be written to based on the

bit mask specified. The final instruction cycles through the LEDs by making PinData

equal to 2, 4, 8, 2, 4, 8 and so on. Note that the values sent to the pins match their

positions; a “one” in the bit two position can only reach the bit two pin on the port.

Now might be a good time to look at the Datasheet for your Stellaris device. Check out

the GPIO chapter to understand the unique way the GPIO data register is designed and

the advantages of this approach.

Leave a line for spacing, and then add this code after the code in the previous step.

while(1)

{

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, PinData);

 SysCtlDelay(2000000);

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 SysCtlDelay(2000000);

 if(PinData==8) {PinData=2;} else {PinData=PinData*2;}

}

 If you find that the indentation of your code doesn’t look quite right, select all of your

code by clicking CTRL-A and then right-click on the selected code. Select Source

Correct Indentation. Also notice the other great stuff under the Source and Surround

With selections.

 Lab 3: Initialization and GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 15

7. Click the Save button to save your work. Your code should look something like this:

#include "inc/hw_memmap.h"

#include "inc/hw_types.h"

#include "driverlib/sysctl.h"

#include "driverlib/gpio.h"

int PinData=2;

int main(void)

{

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 while(1)

 {

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, PinData);

 SysCtlDelay(2000000);

 GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 SysCtlDelay(2000000);

 if(PinData==8) {PinData=2;} else {PinData=PinData*2;}

 }

}

Sorry about the small font here, but any larger font made the SysCtlClockSet()

instruction look strange. If you’re having problems, you can cut/paste this code into main.c

or you can cut/paste from the main.txt file in your Lab3/ccs folder.

If you were to try building this code now (please don’t), it would fail. Note the question

marks next to the include statements … CCS has no idea where those files are located. We

still need to add the start up code and set our build options.

Startup Code

8. In addition to the main file you have created, you will also need a startup file specific to

the tool chain you are using. This file contains the vector table, startup routines to copy

initialized data to RAM and clear the bss section, and default fault ISRs. We included this

file in your folder.

Double-click on startup_ccs.c in your Project Explorer pane and take a look

around. Don’t make any changes at this time.

Lab 3: Initialization and GPIO

3 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

Set the Build Options

9. Right-click on Lab3 in the Project Explorer pane and select Properties. Click Include

Options under ARM Compiler. In the bottom, include search path pane, click the Add

button and add the following search path:

${PROJECT_ROOT}/../../../..

If you followed the instructions when you created the Lab3 project, this path, 4 levels

above the project folder, will give your project access to the inc and driverlib

folders. Otherwise you will have to adjust the path. You can check it for yourself using

Windows Explorer.

Avoid typing errors and copy/paste from the workbook pdf for this and the next

step.

Click OK. After a moment, CCS will refresh the project and you should see the question

marks disappear from the include lines in main.c.

 Lab 3: Initialization and GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 17

10. Right-click on Lab3 again in the Project Explorer pane and select Properties. Under

ARM Linker, click File Search Path. We need to provide the project with the path to

the M4F libraries. Add the following include library file to the top window:

${PROJECT_ROOT}/../../../../driverlib/ccs-cm4f/Debug/driverlib-cm4f.lib

 Of course, if you did not follow the directions when creating the Lab3 project, this path

will have to be adjusted like the previous one.

Click OK to save your changes.

Lab 3: Initialization and GPIO

3 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

Compile, Download and Run the Code

11. Compile and download your application by clicking the Debug button on the menu

bar. If you are prompted to save changes, do so. If you have any issues, correct them, and

then click the Debug button again (see the hints page in section 2). After a successful

build, the CCS Debug perspective will appear.

Click the Resume button to run the program that was downloaded to the flash

memory of your device. You should see the LEDs flashing. If you want to edit the code

to change the delay timing or which LEDs that are flashing, go ahead.

If you are playing around with the code and get the message “No source available for

…”, close that editor tab. The source code for that function is not present in our project. It

is only present as a library file.

Click on the Terminate button to return to the CCS Edit perspective.

 Lab 3: Initialization and GPIO

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization 3 - 19

Examine the Stellaris Pin Masking Feature

Note that the following steps differ slightly from the workshop video.

12. Let’s change the code so that all three LEDs are on all the time. Make the following

changes:

Find the line containing int PinData=2; and change it to int PinData=14;

Find the line containing if(PinData … and comment it out by adding // to the start

of the line.

Save your changes.

13. Compile and download your application by clicking the Debug button on the menu

bar. Click the Resume button to run the code. With all three LEDs being lit at the

same time, you should see them flashing an almost white color.

14. Now let’s use the pin masking feature to light the LEDs one at the time. We don’t have to

go back to the CCS Edit perspective to edit the code. We can do it right here. In the code

window, look at the first line containing GPIOPinWrite(). The pin mask here is

GPIO_PIN_1| GPIO_PIN_2| GPIO_PIN_3 , meaning that all three of these bit

positions, corresponding to the positions of the LED will be sent to the GPIO port.

Change the bit mask to GPIO_PIN_1. The line should look like this:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, PinData);

15. Compile and download your application by clicking the Debug button on the menu

bar. When prompted to save your work, click OK. When you are asked if you want to

terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash: _________

Click the Resume button . If you predicted red, you were correct.

16. In the code window, change the first GPIOPinWrite() line to:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, PinData);

17. Compile and download your application by clicking the Debug button on the menu

bar. When prompted to save your work, click OK. When you are asked if you want to

terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash: _________

Click the Resume button . If you predicted blue, you were correct.

18. In the code window, change the first GPIOPinWrite() line to:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_3, PinData);

Lab 3: Initialization and GPIO

3 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Initialization

19. Compile and download your application by clicking the Debug button on the menu

bar. When prompted to save your work, click OK. When you are asked if you want to

terminate the debug sessions, click Yes.

Before clicking the Resume button, predict which LED you expect to flash: _________

Click the Resume button . If you predicted green, you were correct.

20. Change the code back to the original set up: Make the following changes:

Find the line containing int PinData14; and change it to int PinData=2;

Find the line containing if(PinData … and uncomment it

Find the line containing the first GPIOPinWrite() and change it back to:

GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1| GPIO_PIN_2| GPIO_PIN_3, PinData);

21. Compile and download your application by clicking the Debug button on the menu

bar. When prompted to save your work, click OK. When you are asked if you want to

terminate the debug sessions, click Yes. Click the Resume button and verify that the

code works like it did before.

22. Homework idea: Look at the use of the ButtonsPoll() API call in the qs-rgb.c

file in the quickstart application (qs-rgb) folder. Write code to use that API function to

turn the LEDs on and off using the pushbuttons.

 You’re done.

